Publications

2023

Albaghdadi, Mazen, Michael N Young, Rasha Al-Bawardy, Peter Monteleone, Beau Hawkins, Ehrin Armstrong, Mohamad Kassab, et al. (2023) 2023. “Outcomes of Atherectomy in Patients Undergoing Lower Extremity Revascularisation”. EuroIntervention : Journal of EuroPCR in Collaboration With the Working Group on Interventional Cardiology of the European Society of Cardiology 19 (11): e955-e963. https://doi.org/10.4244/EIJ-D-23-00432.

BACKGROUND: There is a paucity of real-world data on the in-hospital (IH) and post-discharge outcomes in patients undergoing lower extremity peripheral vascular intervention (PVI) with adjunctive atherectomy.

AIMS: In this retrospective, registry-based study, we evaluated IH and post-discharge outcomes among patients undergoing PVI, treated with or without atherectomy, in the National Cardiovascular Data Registry PVI Registry.

METHODS: The IH composite endpoint included procedural complications, bleeding or thrombosis. The primary out-of-hospital endpoint was major amputation at 1 year. Secondary endpoints included repeat endovascular or surgical revascularisation and death. Multivariable regression was used to identify predictors of atherectomy use and its association with clinical endpoints.

RESULTS: A total of 30,847 patients underwent PVI from 2014 to 2019, including 10,971 (35.6%) treated with atherectomy. The unadjusted rate of the IH endpoint occurred in 524 (4.8%) of the procedures involving atherectomy and 1,041 (5.3%) of non-atherectomy procedures (p=0.07). After adjustment, the use of atherectomy was not associated with an increased risk of the combined IH endpoint (p=0.68). In the 6,889 (22.4%) patients with out-of-hospital data, atherectomy was associated with a reduced risk of amputation (adjusted hazard ratio [aHR] 0.67, 95% confidence interval [CI]: 0.51-0.85; p<0.01) and surgical revascularisation (aHR 0.63, 95% CI: 0.44-0.89; p=0.017), no difference in death rates (p=0.10), but an increased risk of endovascular revascularisation (aHR 1.21, 95% CI: 1.06-1.39; p<0.01) at 1 year.

CONCLUSIONS: The use of atherectomy during PVI is common and is not associated with an increase in IH adverse events. Longitudinally, patients treated with atherectomy undergo repeat endovascular reintervention more frequently but experience a reduced risk of amputation and surgical revascularisation.

Carson, Jeffrey L, Maria Mori Brooks, Paul C Hébert, Shaun G Goodman, Marnie Bertolet, Simone A Glynn, Bernard R Chaitman, et al. (2023) 2023. “Restrictive or Liberal Transfusion Strategy in Myocardial Infarction and Anemia”. The New England Journal of Medicine 389 (26): 2446-56. https://doi.org/10.1056/NEJMoa2307983.

BACKGROUND: A strategy of administering a transfusion only when the hemoglobin level falls below 7 or 8 g per deciliter has been widely adopted. However, patients with acute myocardial infarction may benefit from a higher hemoglobin level.

METHODS: In this phase 3, interventional trial, we randomly assigned patients with myocardial infarction and a hemoglobin level of less than 10 g per deciliter to a restrictive transfusion strategy (hemoglobin cutoff for transfusion, 7 or 8 g per deciliter) or a liberal transfusion strategy (hemoglobin cutoff, <10 g per deciliter). The primary outcome was a composite of myocardial infarction or death at 30 days.

RESULTS: A total of 3504 patients were included in the primary analysis. The mean (±SD) number of red-cell units that were transfused was 0.7±1.6 in the restrictive-strategy group and 2.5±2.3 in the liberal-strategy group. The mean hemoglobin level was 1.3 to 1.6 g per deciliter lower in the restrictive-strategy group than in the liberal-strategy group on days 1 to 3 after randomization. A primary-outcome event occurred in 295 of 1749 patients (16.9%) in the restrictive-strategy group and in 255 of 1755 patients (14.5%) in the liberal-strategy group (risk ratio modeled with multiple imputation for incomplete follow-up, 1.15; 95% confidence interval [CI], 0.99 to 1.34; P = 0.07). Death occurred in 9.9% of the patients with the restrictive strategy and in 8.3% of the patients with the liberal strategy (risk ratio, 1.19; 95% CI, 0.96 to 1.47); myocardial infarction occurred in 8.5% and 7.2% of the patients, respectively (risk ratio, 1.19; 95% CI, 0.94 to 1.49).

CONCLUSIONS: In patients with acute myocardial infarction and anemia, a liberal transfusion strategy did not significantly reduce the risk of recurrent myocardial infarction or death at 30 days. However, potential harms of a restrictive transfusion strategy cannot be excluded. (Funded by the National Heart, Lung, and Blood Institute and others; MINT ClinicalTrials.gov number, NCT02981407.).